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Abstract. As argued previously, amplitudes of quantum field theories on non-commutative space and time
cannot be computed using näıve path integral Feynman rules. One of the proposals is to use the Gell-
Mann–Low formula with time-ordering applied before performing the integrations. We point out that the
previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is
explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems
to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop
self-energy for a space/time non-commutative φ4 theory. Although in all intermediate steps only three-
momenta play a rôle, the final result is manifestly Lorentz covariant and agrees with the näıve calculation.
Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole
lines only.

1 Introduction

Quantum field theories on non-commutative spaces are
full of surprises, indicating that a true understanding of
quantum field theory is still missing [1]. This means, on the
other hand, that studying the quantization of field theories
on non-commutative spaces we resolve the degeneracy of
various methods developed for commutative geometries:
The outcomes of different quantization schemes ported to
non-commutative geometries will no longer coincide.

At the moment we know of two major challenges. First,
the evaluation of Feynman graphs as a perturbative solu-
tion of the path integral produces a completely new type of
infrared-like singularities [2,3] in non-planar graphs. This
can be understood from the power-counting theorem [4]
for non-commutative (massive, Euclidian) field theories,
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which implies the existence of two types (rings and com-
mutants) of non-local divergences.

Second, the case of a Minkowskian signature of the
non-commutative geometry (“space/time non-commuta-
tivity”) turns out to be involved. It was pointed out in [5]
that in the Minkowskian (non-degenerate) case the Wick
rotation of an Euclidian Green’s function does not give
a meaningful result, first of all because unitarity would
be lost [6]. The reason is that the Osterwalder–Schrader
theorem [7] does not hold. Already in [8] there was given
a proposal for a correct quantization of field theories on
space/time non-commutative geometries: Starting with
interaction Hamiltonians on a Fock space

HI(t) =
∫

x0=t

d3x : (φ � φ � · · · � φ)(x) : (1)

(and averaging over the non-commutativity parameter)
the contributions to the scattering amplitudes were de-
fined as the Dyson series

Gn(x1, . . . , xk) :=
(−i)n

n!

∫
dt1 . . .dtn

× 〈0
∣∣∣Tφ(x1) . . . φ(xk)HI(t1) · · ·HI(tn)

∣∣∣0〉 , (2)

where T denotes the time-ordering with respect to
{x0

1, . . . , x
0
k, t1, . . . , tn} and |0〉 the vacuum state. Unitar-

ity is preserved. In [5] there was added a second proposal,
the iterative solution of the (interacting) field equation
(Yang–Feldman approach), which has the advantage of
being manifestly covariant. Unitarity is preserved as well.
We refer, in particular, to [9].
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A third approach, the direct application of the Gell-
Mann–Low formula for Green’s functions,

Gn(x1, . . . , xk) :=
in

n!

∫
d4z1 . . .d4zn

× 〈0
∣∣∣Tφ(x1) . . . φ(xk)LI(z1) · · · LI(zn)

∣∣∣0〉con , (3)

where LI is the interaction Lagrangian, was elaborated in
[10]. The superscript con means projection onto the con-
nected part. Unitarity was investigated in [11]. That ap-
proach was called “time-ordered perturbation theory” in
[10], a name which we find ambiguous. The time-ordering
in [10] is considered for external vertices and interaction
points only, and not with respect to the actual time-order
of the fields in the interaction Lagrangian. We give in
Sect. 2 a few comments on the two natural ways of time-
ordering. The version used in [10] is an interaction-point
time-ordering (IPTO); it is explicitly acausal, and to be
distinguished from a true causal time-ordering.

Explicit calculations for the proposed quantization
schemes of space/time non-commutative field theories are
technically much more cumbersome than Feynman graph
computations. It is therefore desirable to extract a power-
ful calculus out of the general schemes. In a first step one
has to familiarize oneself with the computational methods
of the new approach.

For that purpose we compute in this paper the one-
loop two-point function for a φ4 theory on non-commu-
tative space-time. The result of the indeed very lengthy
but straightforward calculation in interaction-point time-
ordered perturbation theory agrees with the näıve path
integral computation of the relevant Feynman graph. De-
riving in Sect. 4 the Feynman rules for IPTO, we show,
however, that this is true for tadpole lines only (which
should be removed anyway by normal ordering).

We may speculate that taking the true causal time-
ordering in the Gell-Mann–Low formula one ends up with
the usual Feynman rules involving the causal Feynman
propagator. It seems, therefore, that causality and unitar-
ity are mutually exclusive properties of space/time non-
commutative geometries.

2 Comments on time-ordering and causality

By “non-commutative R
4” one understands the algebra R

4
θ

of Schwartz class functions on ordinary four-dimensional
space, equipped with the multiplication rule

(f � g)(x)=
∫

d4s

∫
d4l

(2π)4
f
(
x − 1

2 l̃
)

g(x + s) eils , (4)

where l̃ν := lµθµν . The product (4) characterized by a real
skew-symmetric translation-invariant tensor θµν = −θνµ

of dimension [length]2 is associative and non-commuta-
tive; it is a non-local product on rapidly decreasing func-
tions.

We consider a scalar field theory on R
4
θ given by the

classical action

Σ =
∫

d4z
( 1

2gµν(∂µφ � ∂νφ)(z) − 1
2m2(φ � φ)(z)

+
g

4!
(φ � φ � φ � φ)(z)

)
, (5)

with φ ∈ R
4
θ. By definition (4) we have(

φ � φ � φ � φ
)
(z)

=
∫ 3∏

i=1

(
d4si

d4li
(2π)4

eilisi

)
φ
(
z− 1

2 l̃1

)
φ
(
z+s1− 1

2 l̃2

)

×φ
(
z+s1+s2− 1

2 l̃3

)
φ(z+s1+s2+s3) . (6)

If gµν is the Minkowskian metric gµν = diag(1, −1, −1,
−1), we cannot simply Wick-rotate the Euclidian Green’s
functions obtained by evaluation of the path integral, see
[5]. Here we shall follow the proposal of [10] and use the
Gell-Mann–Low formula (3) to define the quantum field
theory. However, one has to be more careful with the def-
inition of the time-ordering. Let us consider the simplest
case of the two-point function at first order in g,

G(x, y) =
g

4!

∫
d4z 〈0

∣∣∣T (φ(x)φ(y)
(
φ � φ � φ � φ

)
(z)
)∣∣∣0〉 .

(7)
(We put the missing factor i directly into the formula for
the element of the S-matrix.) In the same manner as on
commutative space-time, the integration over the inter-
action point is performed after taking the time-ordered
product. Since the �-product for θ0i �= 0 is non-local in
time, one has to say clearly what one understands under
time-ordering. Let us discuss this nuance for the geomet-
rical situation relevant for (7):

. (8)

This arrangement of fields corresponds to the following
non-vanishing contribution to the true time-ordering
of (7):

G(8)(x, y)

=
∫

d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)
τ
(
s0
1+s0

2+s0
3+

1
2 l̃01

)

×τ
(
z0− 1

2 l̃01−x0
)

τ
(
x0−z0−s0

1+
1
2 l̃02

)
×τ
(
z0+s0

1− 1
2 l̃02−y0

)
τ
(
y0−z0−s0

1−s0
2+

1
2 l̃03

)
×〈0
∣∣∣φ(z+s1+s2+s3)φ

(
z− 1

2 l̃1

)
φ(x) (9)

×φ
(
z+s1− 1

2 l̃2

)
φ(y)φ

(
z+s1+s2− 1

2 l̃3

) ∣∣∣0〉 .

Here, τ(t) denotes the step function τ(t) = 1 for t > 0
and τ(t) = 0 for t < 0. There are 6! = 720 different contri-
butions to (7) when interpreting the time-ordering in the
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Gell-Mann–Low formula as the name suggests. The time-
ordering guarantees that causal processes only contribute
to the S-matrix. Positive energy solutions propagate for-
ward in time and negative energy solutions backward.

There exists a modification of (7), where the time-
ordering is defined with respect to the interaction point:

G′
(8)(x, y)

=
∫

d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)
τ(x0−z0)τ(z0−y0)

×〈0
∣∣∣φ(x)φ

(
z− 1

2 l̃1

)
φ
(
z+s1− 1

2 l̃2

)
(10)

×φ
(
z+s1+s2− 1

2 l̃3

)
φ(z+s1+s2+s3)φ(y)

∣∣∣0〉 .

There are now only 3! = 6 different contributions of this
type. Since the individual fields are now (in most of the
cases) at the wrong place with respect to the time-order,
the interpretation (10) of the Gell-Mann–Low formula vi-
olates causality. Now both energy solutions propagate in
any direction of time. There is, however, an argument in
favor of (10): Contributions (2) to the Dyson series are
precisely ordered with respect to the time stamp of the in-
teraction Hamiltonians. It does not matter how the time-
dependence of the interaction Hamiltonian is produced
from the time-dependence of the constituents.

Since it is completely unclear how to derive the Gell-
Mann–Low formula in the non-commutative setting, we
have no guidance so far whether (9) or (10) (or none of the
two) is the correct one. The authors of [10] do not mention
(9). They use the exponential form of the �-product, which
is a formal translation1 of a correct formula in momentum
space, but which might be dangerous in position space. See
also the discussion in [12]. Apart from avoiding subtleties
with generalized derivatives, the use of (6) instead of the
exponential form simplifies the calculations considerably.

3 The one-loop two-point function
in “interaction-point time-ordered
perturbation theory”

Since the calculation of the sum of terms (10) is (at least)
by a factor of 120 simpler than the calculation of the sum
of terms (9), we evaluate in this paper the one-loop two-
point function interpreted according to (10). The name
“time-ordered perturbation theory” used in [10] does not
seem appropriate to us, because the previous discussion

1 The derivatives in the exponential form of the �-product
are generalized derivatives in the sense of distribution the-
ory, not ordinary derivatives. As such one cannot apply the
näıve rules of differential calculus. To make this transparent,
write φ(x + a)φ(y) = exp(aµ∂x

µ)φ(x)φ(y), and hide the expo-
nential of the derivatives in the definition of the product. It
would be completely wrong to use the step function τ(x0−y0)
or τ(y0−x0) for the product φ(x + a)φ(y). One of the authors
(R.W.) is grateful to Edwin Langmann for explaining this mat-
ter to him

shows that this approach is precisely not based on time-
ordering. We should better call it “interaction-point time-
ordered perturbation theory”, and use the symbol TI in-
stead of the true causal time-ordering T . The calculation
can be shortened considerably when starting directly from
the Feynman rule (39) derived in Sect. 4. But without
computing at least one example one has little understand-
ing for the starting point (34) of the general derivation.

With these remarks, the entire contribution to the one-
loop two-point function in non-commutative φ4 theory
reads

G(x, y)

=
g

4!

∫
d4z 〈0

∣∣∣TI
(
φ(x)φ(y)

(
φ � φ � φ � φ

)
(z)
)∣∣∣0〉

=
g

4!

∫
d4z
(
τ(x0 − y0)τ(y0 − z0)

×〈0∣∣φ(x)φ(y)
(
φ � φ � φ � φ

)
(z)
∣∣0〉

+τ(x0 − z0)τ(z0 − y0)
×〈0∣∣φ(x)

(
φ � φ � φ � φ

)
(z)φ(y)

∣∣0〉
+τ(y0 − x0)τ(x0 − z0)

×〈0∣∣φ(y)φ(x)
(
φ � φ � φ � φ

)
(z)
∣∣0〉

+τ(y0 − z0)τ(z0 − x0)
×〈0∣∣φ(y)

(
φ � φ � φ � φ

)
(z)φ(x)

∣∣0〉
+τ(z0 − x0)τ(x0 − y0)

×〈0∣∣(φ � φ � φ � φ
)
(z)φ(x)φ(y)

∣∣0〉
+τ(z0 − y0)τ(y0 − x0) (11)

×〈0∣∣(φ � φ � φ � φ
)
(z)φ(y)φ(x)

∣∣0〉) ,

with the �-product given in (6). We follow the usual strat-
egy to obtain in the end the amputated on-shell momen-
tum-space one-loop two-point function. We insert (6) into
(11) and split each field (at given position x) φ(x) =
φ+(x)+φ−(x) into negative and positive frequency parts,
which have the property

φ−(x)
∣∣0〉 = 0 ,

〈
0
∣∣φ+(x) = 0 . (12)

Our conventions are listed in the appendix; they are op-
posite to [10]. It is convenient now to commute the φ− to
the right and the φ+ to the left, using the commutation
rule

[φ−(x1), φ+(x2)] = D+(x1 − x2) , (13)

where D+(x1 − x2) is the positive frequency propagator

D+(x1 − x2) =
∫

d3k

(2π)32ωk
e−ik+(x1−x2) , (14)

with ωk =
√

	k2 + m2, and k+
µ = (+ωk, −	k) is the positive

energy on-shell four-momentum. A lengthy but completely
standard computation yields

G(x, y) = Gcon(x, y) + Gdiscon(x, y) , (15)

Gdiscon(x, y)
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=
g

4!

∫
d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)

×
{(

τ(x0 − y0)τ(y0 − z0)D+(x−y)

+τ(x0 − z0)τ(z0 − y0)D+(x−y)

+τ(z0 − x0)τ(x0 − y0)D(x−y)
)

+
(
x ↔ y

)}

×
(
D+
(
− 1

2 l̃2−s2+ 1
2 l̃3

)
D+
(
− 1

2 l̃1−s1−s2−s3

)
+D+

(
− 1

2 l̃1−s1−s2+ 1
2 l̃3

)
D+
(
− 1

2 l̃2−s2−s3

)
+D+

(
− 1

2 l̃1−s1+ 1
2 l̃2

)
D+
(
− 1

2 l̃3−s3

))
, (16)

Gcon(x, y)

=
g

4!

∫
d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)

×
{(

τ(x0 − y0)τ(y0 − z0)

×
{(

D+
(
− 1

2 l̃1−s1−s2−s3

)
D+
(
x−z−s1+ 1

2 l̃2

)

×D+
(
y−z−s1−s2+ 1

2 l̃3

)
+D+

(
− 1

2 l̃1−s1−s2+ 1
2 l̃3

)
D+
(
x−z−s1+ 1

2 l̃2

)
×D+(y−z−s1−s2−s3)

+D+
(
− 1

2 l̃1−s1+ 1
2 l̃2

)
D+
(
x−z−s1−s2+ 1

2 l̃3

)
×D+(y−z−s1−s2−s3)

+D+
(
− 1

2 l̃2−s2−s3

)
D+
(
x−z+ 1

2 l̃1

)
×D+

(
y−z−s1−s2+ 1

2 l̃3

)
+D+

(
− 1

2 l̃2−s2+ 1
2 l̃3

)
D+
(
x−z+ 1

2 l̃1

)
×D+(y−z−s1−s2−s3)

+D+
(
− 1

2 l̃3−s3

)
D+
(
x−z+ 1

2 l̃1

)
×D+

(
y−z−s1− 1

2 l̃2

))

+(x ↔ y)

}

+τ(x0 − z0)τ(z0 − y0)

×
{

D+
(
− 1

2 l̃1−s1−s2−s3

)
D+
(
x−z−s1−s2+ 1

2 l̃3

)

×D+
(
z+s1− 1

2 l̃2−y
)

+D+
(
− 1

2 l̃2−s2−s3

)
D+
(
x−z−s1−s2+ 1

2 l̃3

)
×D+

(
z− 1

2 l̃1−y
)

+D+
(
− 1

2 l̃1−s1−s2+ 1
2 l̃3

)
D+(x−z−s1−s2−s3)

×D+
(
z+s1− 1

2 l̃2−y
)

+D+
(
− 1

2 l̃2−s2+ 1
2 l̃3

)
D+(x−z−s1−s2−s3)

×D+
(
z− 1

2 l̃1−y
)

+D+
(
− 1

2 l̃1−s1−s2−s3

)
D+
(
x−z−s1+ 1

2 l̃2

)
×D+

(
z+s1+s2− 1

2 l̃3−y
)

+D+
(
− 1

2 l̃3−s3

)
D+
(
x−z−s1+ 1

2 l̃2

)
×D+

(
z− 1

2 l̃1−y
)

+D+
(
− 1

2 l̃1−s1+ 1
2 l̃2

)
D+(x−z−s1−s2−s3)

×D+
(
z+s1+s2− 1

2 l̃3−y
)

+D+
(
− 1

2 l̃1−s1−s2+ 1
2 l̃3

)
D+
(
x−z−s1+ 1

2 l̃2

)
×D+(z+s1+s2+s3−y)

+D+
(
− 1

2 l̃1−s1+ 1
2 l̃2

)
D+
(
x−z−s1−s2+ 1

2 l̃3

)
×D+(z+s1+s2+s3−y)

+D+
(
− 1

2 l̃2−s2−s3

)
D+
(
x−z+ 1

2 l̃1

)
×D+

(
z+s1+s2− 1

2 l̃3−y
)

+D+
(
− 1

2 l̃3−s3

)
D+
(
x−z+ 1

2 l̃1

)
×D+

(
z+s1− 1

2 l̃2−y
)

+D+
(
− 1

2 l̃2−s2+ 1
2 l̃3

)
D+
(
x−z+ 1

2 l̃1

)

×D+(z+s1+s2+s3−y)

}

+τ(z0 − x0)τ(x0 − y0)

×
{(

D+
(
− 1

2 l̃1−s1−s2−s3

)
D+
(
z+s1− 1

2 l̃2−x
)

×D+
(
z+s1+s2− 1

2 l̃3−y
)

+D+
(
− 1

2 l̃2−s2−s3

)
D+
(
z− 1

2 l̃1−x
)

×D+
(
z+s1+s2− 1

2 l̃3−y
)

+D+(−s3−l̃3) D+
(
z− 1

2 l̃1−x
)

×D+
(
z+s1− 1

2 l̃2−y
)

+D+
(
− 1

2 l̃1−s1−s2+ 1
2 l̃3

)
D+
(
z+s1− 1

2 l̃2−x
)

×D+(z+s1+s2+s3−y)

+D+
(
− 1

2 l̃2−s2+ 1
2 l̃3

)
D+
(
z− 1

2 l̃1−x
)

×D+(z+s1+s2+s3−y)
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+D+
(
− 1

2 l̃1−s1+ 1
2 l̃2

)
D+
(
z+s1+s2− 1

2 l̃3−x
)

×D+(z+s1+s2+s3−y)
)

+(x ↔ y)

})
+ (x ↔ y)

}
. (17)

We have to take the connected part Gcon(x, y) only. Insert-
ing (14) we can perform the si-integrations, which result
in δ-distributions in li, so that the li-integration can be
performed as well. The result has a remarkably compact
form:

Gcon(x, y)

=
g

12

∫
d4z

∫
d3k1

(2π)32ωk1

∫
d3k2

(2π)32ωk2

cos
(

1
2k+

1 k̃+
2

)
×
(
τ(x0−y0)τ(y0−z0)e−ik+

1 (x−z)e−ik+
2 (y−z)I++(k+

1 , k+
2 )

+τ(y0−x0)τ(x0−z0)e−ik+
1 (x−z)e−ik+

2 (y−z)I++(k+
1 , k+

2 )

+τ(x0−z0)τ(z0−y0)e−ik+
1 (x−z)e−ik+

2 (z−y)I+−(k+
1 , k+

2 )

+τ(y0−z0)τ(z0−x0)e−ik+
1 (z−x)e−ik+

2 (y−z)I−+(k+
1 , k+

2 )

+τ(z0−x0)τ(x0−y0)e−ik+
1 (z−x)e−ik+

2 (z−y)I−−(k+
1 , k+

2 )

+τ(z0−y0)τ(y0−x0)e−ik+
1 (z−x)e−ik+

2 (z−y)

× I−−(k+
1 , k+

2 )
)
, (18)

where (k̃+)ν ≡ (k+)µθµν and

Iκλ(k+
1 , k+

2 ) (19)

=
∫

d3k

(2π)32ωk

(
3 + eiκk+

1 k̃++iλk+
2 k̃+

+ eiκk+
1 k̃+

+ eiλk+
2 k̃+)

,

for κ, λ = ±1.
Next we pass to the Fourier-transformed Green’s func-

tion

Gcon(p, q) =
∫

d4x d4y eipx+iqy Gcon(x, y) . (20)

We insert the identity (use the residue theorem)

τ(x0 − y0) = lim
δ→0

i
2π

∫ ∞

−∞
dt

e−it(x0−y0)

t + iδ
(21)

and perform the integrations over x, y, z. The result is a
host of δ-distributions, which allow us to integrate over
	k1,	k2, t1, t2:

Gcon(p, q)

= lim
δ1,δ2→0

g

12

(
i

2π

)2 ∫
d4x d4y d4z

∫ ∞

−∞

dt1
t1 + iδ1

×
∫ ∞

−∞

dt2
t2 + iδ2

∫
d3k1

(2π)32ωk1

×
∫

d3k2

(2π)32ωk2

cos
(

1
2k+

1 k̃+
2

)

×
(
ei{x0(p0−t1−ωk1 )+y0(q0+t1−t2−ωk2 )+z0(t2+ωk1+ωk2 )}

×ei{�x(�k1−�p)+�y(�k2−�q)−�z(�k1+�k2)}I++(k+
1 , k+

2 )

+ei{x0(p0+t1−t2−ωk1 )+y0(q0−t1−ωk2 )+z0(t2+ωk1+ωk2 )}

×ei{�x(�k1−�p)+�y(�k2−�q)−�z(�k1+�k2)}I++(k+
1 , k+

2 )

+ei{x0(p0−t1−ωk1 )+y0(q0+t2+ωk2 )+z0(t1−t2+ωk1−ωk2 )}

×ei{�x(�k1−�p)−�y(�k2+�q)+�z(�k2−�k1)}I+−(k+
1 , k+

2 )

+ei{x0(p0+t2+ωk1 )+y0(q0−t1−ωk2 )+z0(t1−t2−ωk1+ωk2 )}

×ei{−�x(�k1+�p)+�y(�k2−�q)+�z(�k1−�k2)}I−+(k+
1 , k+

2 )

+ei{x0(p0+t1−t2+ωk1 )+y0(q0+t2+ωk2 )−z0(t1+ωk1+ωk2 )}

×ei{−�x(�k1+�p)−�y(�k2+�q)+�z(�k1+�k2)}I−−(k+
1 , k+

2 )

+ei{x0(p0+t2+ωk1 )+y0(q0+t1−t2+ωk2 )−z0(t1+ωk1+ωk2 )}

×ei{−�x(�k1+�p)−�y(�k2+�q)+�z(�k1+�k2)}I−−(k+
1 , k+

2 )
)

= lim
δ1,δ2→0

g

12
(2π)4δ(p + q)

×
(

1
p0−ωp+iδ1

1
ωp+ωq−iδ2

cos
( 1

2p+q̃+
)

4ωpωq
I++(p+, q+)

+
1

q0−ωq+iδ1

1
ωp+ωq−iδ2

cos
( 1

2p+q̃+
)

4ωpωq
I++(p+, q+)

+
1

p0−ωp+iδ1

1
q0+ωq−iδ2

cos
( 1

2p+(−q̃)+
)

4ωpωq

×I+−(p+, (−q)+)

+
1

q0−ωq+iδ1

1
p0+ωp−iδ2

cos
( 1

2 (−p)+q̃+
)

4ωpωq

×I−+((−p)+, q+)

+
1

ωp+ωq−iδ1

1
−q0−ωq+iδ2

cos
( 1

2 (−p)+(−q̃)+
)

4ωpωq

×I−−((−p)+, (−q)+)

+
1

ωp+ωq−iδ1

1
−p0−ωp+iδ2

cos
( 1

2 (−p)+(−q̃)+
)

4ωpωq

×I−−((−p)+, (−q)+)

)
. (22)

Note the appearance of δ(p+q) implementing conservation
of the four-momentum (translation invariance). We have
used ω±k = ωk.

Following [10] we amputate the external legs by mul-
tiplying (22) by the inverse propagators −i(p2

0 − ω2
p) and

−i(q2
0 − ω2

q ). Using (±k)+ = ±k±, in particular the iden-
tity

I±±((±p)+, (±q)+)

=
∫

d3k

(2π)32ωk

(
3 + eip±k̃++iq±k̃+

+ eip±k̃+
+ eiq±k̃+)

≡ I(p±, q±) , (23)

we obtain

(2π)4δ(p + q)Γ (p, q)
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= −(p2
0 − ω2

p)(q2
0 − ω2

q )G(p, q)

= − lim
δ1,δ2→0

g

12
(2π)4δ(p + q) (p2

0 − ω2
p)(q2

0 − ω2
q )

×
(

1
p0−ωp+iδ1

1
ωp+ωq−iδ2

cos
( 1

2p+q̃+
)

4ωpωq
I(p+, q+)

+
1

q0−ωq+iδ1

1
ωp+ωq−iδ2

cos
( 1

2p+q̃+
)

4ωpωq
I(p+, q+)

+
1

p0−ωp+iδ1

1
q0+ωq−iδ2

cos
( 1

2p+q̃−)
4ωpωq

I(p+, q−)

+
1

q0−ωq+iδ1

1
p0+ωp−iδ2

cos
( 1

2p−q̃+
)

4ωpωq
I(p−, q+)

+
1

ωp+ωq−iδ1

1
−q0−ωq+iδ2

cos
( 1

2p−q̃−)
4ωpωq

I(p−, q−)

+
1

ωp+ωq−iδ1

1
−p0−ωp+iδ2

× cos
( 1

2p−q̃−)
4ωpωq

I(p−, q−)

)
. (24)

Taking on-shell external momenta p0 = ωp and q0 = −ωq

there survives a single term (the third one):

Γ (p+, q−) = lim
p0→ωp , q0→−ωq

Γ (p, q)

=
g

12
cos
( 1

2p+q̃−) I(p+, q−) (25)

=
g

12

∫
d3k

(2π)32ωk

(
4 + 2 cos(k+p̃+)

)
.

In the last line we have used momentum conservation
p+ = −q− and the skew-symmetry of θ. The remaining in-
tegral over 	k consists of a planar θ-independent part and a
non-planar θ-dependent part (the cosine). The planar part
coincides (up to a factor 2

3 ) with the commutative result;
it is divergent and is to be renormalized as usual by mul-
tiplicative renormalization (or better completely removed
by normal ordering).

To compute the non-planar part, first note that

cos(k+p̃+) = cos
(
ωkp̃0 − 	k	̃p

)
(26)

= cos
(
ωkp̃0

)
cos(	k	̃p) + sin

(
ωkp̃0

)
sin(	k	̃p) ,

where p̃0 := (p̃+)0 and 	̃p =
−→̃
p+. The uneven sine-term

will drop under the integral. Using the residue theorem
we have

eiωkp̃0

2ωk

=




lim
ε→0

1
2πi

∫ ∞

−∞
dk0

e−ik0p̃0

(k0 + ωk + iε)(k0 − ωk − iε)
for p̃0 > 0 ,

lim
ε→0

1
2πi

∫ ∞

−∞
dk0

−e−ik0p̃0

(k0 + ωk − iε)(k0 − ωk + iε)
for p̃0 < 0 ,

(27)

e−iωkp̃0

2ωk

=




lim
ε→0

1
2πi

∫ ∞

−∞
dk0

−e−ik0p̃0

(k0 + ωk − iε)(k0 − ωk + iε)
for p̃0 > 0 ,

lim
ε→0

1
2πi

∫ ∞

−∞
dk0

e−ik0p̃0

(k0 + ωk + iε)(k0 − ωk − iε)
for p̃0 < 0 .

(28)

Inserting (26), (27) and (28) into (25) we obtain for the
non-planar graph

Γnon−planar(p+, q−)

≡ g

6

∫
d3k

(2π)32ωk
cos(k+p̃+) (29)

= lim
ε→0

g

6

∫
d4k

(2π)4
�
(

i

k2
0 − (	k2 + m2) + iε

)
e−ikp̃+

,

independent of the sign of p̃0. The result (29) can obvi-
ously be obtained by Feynman rules, with the prescription
that in non-planar tadpoles the propagator to use is the
real part of the Feynman propagator. That real part is
arithmetic mean of causal and acausal propagators. The
observed acausality is no surprise, because according to
(10) the interaction time-ordering TI explicitly violates
causality. As we shall see in Sect. 4, the just given Feyn-
man rule is true for tadpole lines only.

Apart from taking the real part, the evaluation of (29)
coincides with the computation in the “näıve” Feynman
graph approach. Let us nevertheless repeat the steps. We
employ Zimmermann’s ε-trick

1
k2 − m2 + iε

	→ 1
k2
0 + ω2

k(iε−1)

=
ε′−i

(ε′−i)k2
0 + ω2

k(ε−ε′+i+iεε′)
, (30)

the denominator of which has for ε′ < ε a positive real
part, which allows us to introduce a Schwinger parameter:

Γnon−planar(p+, q−)

= �
(

lim
ε→0,ε′<ε

ig
6

∫
d4k

(2π)4

∫ ∞

0
dα (ε′−i)

×e−α{(ε′−i)k2
0+(�k2+m2)(ε−ε′+i+iεε′)}−ik0p̃0+i�k�̃p

)

= �

 lim

ε→0,ε′<ε

ig
6(4π)2

(ε′−i)
1
2

(ε−ε′+i+iεε′)
3
2

×
∫ ∞

0

dα

α2 e− p̃2
0

4α(ε′−i) − �̃p2

4α(ε−ε′+i+iεε′) −αm2(ε−ε′+i+iεε′)
)

= �


lim

ε→0

2ig
3(4π)2

1
(iε−1)

3
2

√√√√ m2(iε−1)

p̃2
0 +

�̃p
2

(iε−1)

×K1

(√
m2(	̃p

2
+ (iε−1)p̃2

0)
))
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= −�
(

2g

3(4π)2

√
−m2

p̃2 K1
(√−p̃2m2

))
. (31)

We have used
∫∞
0

dα
α2 exp(−uα−v/(4α)) = 4

√
u
v K1(

√
uv)

for �u > 0 and �v > 0.
In the particular case where the external momentum

p is put on-shell, we have

−p̃2 = 	̃p
2−p̃2

0 = (θi0

√
	p2+m2 + θijp

j)2 − (θ0jp
j)2 ≥ 0 ,

(32)

because p̃µ has to be space-like or null as a vector which is
orthogonal to the time-like vector pµ. Thus, the projection
onto the real part in (31) is superfluous, and (31) agrees
exactly with the näıve Feynman rule computation of the
sum of graphs

. (33)

However, if these graphs appear as subgraphs in a bigger
graph, the momentum p will be the off-shell momentum
through a propagator, and the projection to the real part
makes a difference.

4 The general case

The graph we have computed (for off-shell external mo-
menta!) is very often made responsible for the so-called
UV/IR mixing. In fact the situation is more complex, as it
is very well described in [4]. The ultimate goal must be to
derive the power-counting theorem for interaction-point
time-ordered perturbation theory (for non-commutative
space and time). In a first step one has to derive graphical
rules to assign an integral to a given graph.

Let us therefore consider the momentum integral for a
general Feynman graph for a non-commutative φ4 theory.
A given connected contribution to the E-point function at
order V in the coupling constant has after performing the
Wick contractions, insertion of the D+ according to (14),
integration over si and li appearing in (6) and insertion
of step functions (21), the form

G(x1, . . . , xE)

= lim
ε→0

∫ V∏
v=1

g d4zv

4!

∫ E+V −1∏
s=1

i dts
(2π)(ts+iε)

×
∫ E∏

e=1

d3pe

(2π)32ωpe

∫ I∏
i=1

d3ki

(2π)32ωki

× exp

(
−i

V∑
v=1

E+V −1∑
s=1

Tvsz
0
vts − i

E∑
e=1

E+V −1∑
s=1

Tesx
0
ets

)

× exp

(
−i

V∑
v=1

zv

(
I∑

i=1

Jvik
+
i +

E∑
e=1

Jvep
+
e

))

× exp

(
−i

E∑
e=1

σep
+
e xe

)

× exp


iθµν


 I∑

i,j=1

Iijk
+
i,µk+

j,ν +
I∑

i=1

E∑
e=1

Iiek
+
i,µp+

e,ν

+
E∑

e,f=1

Iefp+
e,µp+

f,ν




 . (34)

There are E+V −1 step functions according to the time
differences of the E external points xe and the V interac-
tion points zv. For each s there are two non-vanishing T∗s,
where these two indices ∗ are either two indices e, one in-
dex e and one index v, or two indices v. The T∗s for which
the vertex ∗ (zv or xe) is later equals +1, the other one
−1. This gives the second line in (34). An external point
xe is linked via the external line with momentum pe to
exactly one vertex zv, i.e. for given e there is a single non-
vanishing Jve. For our φ4 theory there are I = 2V − 1

2E
internal lines (E is even) with momentum ki which link a
vertex zv to another vertex zv′ . Thus, if v �= v′ (no tad-
poles) for given i there are two non-vanishing Jvi, whereas
for v = v′ we have Jvik

+
i ≡ 0. We orient the internal and

external lines forward in time. Then, the incidence ma-
trices Jvi, Jve equal −1 if the line leaves v and +1 if the
line arrives at v. Similarly, σe = −1 if the line e leaves
xe and σe = +1 if the line e arrives at xe. The matrices
Iij , Iie, Ief are the intersection matrices [13,4], which in-
stead of the Euclidian rosette construction are in IPTO
obtained as follows: According to the definition (6) of the
�-product, write at each vertex v the four fields in (6)
as a time-sequence where zv− 1

2 l̃1 is the latest point and
zv+s1+s2+s3 the earliest point2, irrespective of the actual
time-order of these four points. Connect these points with
vertices y1, y2, y3, v4 according to the following picture:

. (35)

The phase factor produced by the sn and ln variables is
then given by

∫ 3∏
n=1

(
d4sn

d4ln
(2π)4

exp(isnln)
)

× exp
(
−ik+

1 (s1+s2+s3)Jv1 − ik+
2

(
s1+s2− 1

2 l̃3

)
Jv2

−ik+
3

(
s1− 1

2 l̃2

)
Jv3 − ik+

4

(
− 1

2 l̃1

)
Jv4

)
2 By the way, this defines the time-orientation of tadpole

lines
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= exp


 i

2
θµν

4∑
j=2

j−1∑
i=1

k+
i,µJvik

+
j,νJvj




≡ exp


 i

2
θµν

4∑
i,j=1

τv
ijk

+
i,µJvik

+
j,νJvj


 . (36)

We have to define τv
ij = +1 if the line i is connected to

an “earlier” field φ in the vertex v than the line j, other-
wise τv

ij = 0. Summing over all vertices and distinguishing
external and internal lines, we are led to the following
identification in (34):

Iij = 1
2

V∑
v=1

τv
ijJviJvj ,

Iie = 1
2

V∑
v=1

(
τv
ie − τv

ei

)
JviJve ,

Ief = 1
2

V∑
v=1

τv
efJveJvf . (37)

Once more we notice the enormous computational advan-
tage of using the �-product in the form (4).

We perform the Fourier transformation
∫ ∏E

e=1

(
d4xe

exp(iqexe)
)

of (34) to external momentum variables q as
well as the zv-integrations:

G(q1, . . . , qE) = lim
ε→0

gV

(4!)V

E∏
e=1

1
2ωqe

×
∫ I∏

i=1

d3ki

(2π)32ωki

∫ E+V −1∏
s=1

i dts
(2π)(ts + iε)

×
V∏

v=1

(2π)3δ3

(
I∑

i=1

Jvi
	ki +

E∑
e=1

Jveσe	qe

)

×
E∏

e=1

(2π)δ

(
q0
e − σeωqe −

E+V −1∑
s=1

Tests

)

×
V∏

v=1

(2π)δ

(
I∑

i=1

Jviωki +
E∑

e=1

Jveωqe +
E+V −1∑

s=1

Tvsts

)

× exp


iθµν


 I∑

i,j=1

Iijk
+
i,µk+

j,ν +
I∑

i=1

E∑
e=1

Iieσek
+
i,µqσe

e,ν

+
E∑

e,f=1

Iefσeσfqσe
e,µq

σf

f,ν




 . (38)

The vectors 	qe are always outgoing from internal ver-
tices. There are now E+V time-component δ-functions
involving the E+V −1 integration variables ts, after inte-
gration over which there is one remaining δ-function for
the energy conservation δ

(∑E
e=1 q0

e

)
. We multiply (38)

by the inverse propagators
∏E

e=1(−i)((q0
e)2 −ω2

qe
), remove

(2π)4δ4
(∑E

e=1 qe

)
by convention and put q0

e = σeωqe .
There is a non-vanishing contribution only if the external
vertices xe are either before or after the internal vertices
zi. Defining a time-order of vertices v′ < v if z0

v′ < z0
v we

finally get

Γ (qσ1
1 , . . . , qσE

E )

= lim
ε→0

gV

(4!)V

∫ I∏
i=1

d3ki

(2π)32ωki

×
V −1∏
v=1

i(2π)3δ3
(∑I

i=1 Jvi
	ki +

∑E
e=1 Jveσe	qe

)
∑

v′≤v

(∑I
i=1 Jv′iωki +

∑E
e=1 Jv′eωqe

)
+ iε

× exp


iθµν


 I∑

i,j=1

Iijk
+
i,µk+

j,ν +
I∑

i=1

E∑
e=1

Iieσek
+
i,µqσe

e,ν

+
E∑

e,f=1

Iefσeσfqσe
e,µq

σf

f,ν




 . (39)

The vertex which is missing in the product over v is the
latest one. There remain I−V +1=L momentum integra-
tions to perform, where L is the number of loops. The
integral (39) corresponds to a particular graph with E
external and V internal vertices which all have different
dates. The internal vertices are composed of four different
points according to the four fields building the vertex, with
the time-interval within a vertex smaller than the time-
distance to the neighbored vertices. Any external vertex is
a single point which is either later or earlier than all points
in internal vertices. A graph is the connection of each two
of these 4V +E points by a line which is oriented forward
in time, such that at each point we find exactly one end
of a line. We assign to this graph the integral (39) accord-
ing to the incidence matrices, which also enter in (37). Fi-
nally, one has to sum over all different graphs. Note that a
given graph does not have any symmetry because the four
points in the vertices have clearly distinguished dates. The
Feynman rule (39) is easily generalized to other than φ4

theories. Equation (39) is the analytic expression of the
Feynman rules listed in [10], apart from a disagreement in
the symmetry factor.

We now see that the graph we have computed was
very special. Because of V = 1 the denominator in (39)
was absent so that the integration over the propagator
momentum k1 was identical to the näıve Feynman graph
computation. This remains true for all tadpole lines i, be-
cause for them Jvik

+
i = 0 for all v. For internal lines con-

necting points in different vertices we need new techniques
to perform the integrations.

5 Summary

As a warm-up for the general treatment we have com-
puted the one-loop two-point function for a φ4 theory
on non-commutative space and time in the framework
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of “interaction-point time-ordered perturbation theory”.
The calculation is based on free fields (on the mass shell),
but at the end the loop momenta become general four-
momenta. Our final result (for that graph) agrees with a
Feynman graph computation, provided that one assigns to
the internal line the real part of the Feynman propagator.
This can be understood as the inclusion of acausal pro-
cesses in the S-matrix, because IPTO explicitly violates
causality. One may speculate that the true time-ordering
of the �-product (9) will produce the näıve Feynman rules
involving the standard causal Feynman propagator in non-
planar graphs. This approach was shown to violate unitar-
ity of the S-matrix. We have thus to decide whether we
prefer to give up (micro-) causality or unitarity in non-
commutative field theories3.

Next we have derived the Feynman rules (39) for gen-
eral Green’s functions. Power-counting tells us that (39) is
expected to diverge if there are subgraphs with E ≤ 4 ex-
ternal lines. If there are non-planar divergent graphs, it is
not possible to absorb the divergences by local (hence pla-
nar) counterterms. One has therefore to analyze whether
the oscillating phases render the power-counting divergent
integral finite. This requires one to develop techniques for
the computation of (39) in analogy to the treatment of
the Euclidian case in [4]. Of urgent interest are the evalu-
ations of the two-loop two-point function and the one-loop
four-point function.
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commutative geometry and quantum field theory”.

Appendix

A Conventions for Fock space
and propagators

To fix our notation and for convenience we list our con-
ventions for free fields and propagators D±(x − y) and
∆F(x − y).

The free fields (solutions of the homogeneous Klein–
Gordon equation) are mode-decomposed into negative
(φ+) and positive (φ−) frequency parts φ(x) = φ+(x) +
φ−(x),

φ−(x) =
1

(2π)3/2

∫
d3k√
2ωk

a−
k e−ixµk+µ

,

φ+(x) =
1

(2π)3/2

∫
d3k√
2ωk

a+
k e+ixµk+µ

, (40)

with the ladder operators a−, a+ obeying

a−
k |0〉 = 0 , 〈0|a+

k = 0 , [a−
p , a+

q ] = δ3(	p − 	q) . (41)

3 Assuming space-time non-commutativity to be a model of
quantum-gravitational background effects (θ ∼ l2Planck), one
can view this abandonment of causality in the �-product as its
breakdown at the Planck scale

With these definitions we obtain for the two-point vacuum
expectation values and the commutators of positive and
negative frequency parts

〈0|φ(x)φ(y)|0〉 = [φ−(x), φ+(y)] = D+(x − y)

=
∫

d3k

(2π)32ωk
e−i(x−y)µk+µ

,

〈0|φ(y)φ(x)|0〉 = −[φ+(x), φ−(y)] = D−(x − y)

=
∫

d3k

(2π)32ωk
ei(x−y)µk+µ

, (42)

where ωk =
√

	k2 + m2 and (k±)µ = (±ωk,	k)µ. For the
Feynman propagator we hence find

〈0|T (φ(x)φ(y)
)|0〉 = ∆F(x − y)

=
∫

d4k

(2π)4
ie−i(x−y)k

k2 − m2 + iε
, (43)

and for its complex conjugate

〈0|τ(y0 − x0)φ(x)φ(y) + τ(x0 − y0)φ(y)φ(x)|0〉

= ∆∗
F(x − y) =

∫
d4k

(2π)4
−ie−i(x−y)k

k2 − m2 − iε
. (44)

These propagators are solutions of the homogeneous and
inhomogeneous wave equation, respectively:

(∂µ∂µ − m2)xD±(x − y) = 0 ,

(∂µ∂µ − m2)x∆F(x − y) = −iδ4(x − y) . (45)
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